Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (2011 Onwards) (Sem.-1) ENGINEERING MATHEMATICS - I

Subject Code: BTAM-101 Paper ID: [A1101]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.
- Symbols used have their usual meanings. Statistical tables, if demanded, may be provided.

SECTION-A

1. Solve the following:

a) If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

b) Find the stationary points of the function $f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$.

c) If
$$u = x^2 - y^2$$
 and $v = 2xy$ and $x = r \cos \theta$, $y = r \sin \theta$, then find the value of $\frac{\partial(u, v)}{\partial(r, \theta)}$.

d) For what values of a, b, and c the vector function

$$\vec{F} = (x+y+az)\vec{i} + (bx+3y-z)\vec{j} + (3x+cy+z)\vec{k}$$
 is irrotational.

- e) Calculate the circulation of the field $\vec{F} = (x y)\hat{i} + x\hat{j}$ around the circle $x^2 + y^2 = 1$.
- f) Find the length of one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.

g) Evaluate
$$\int_{0}^{2\sqrt{\ln 3}} \int_{y/2}^{\sqrt{\ln 3}} e^{x^2} dx dy.$$

h) State Stoke's theorem.

i) Evaluate
$$\int_C xydx + (x+y)dy$$
, along the curve C: $y = x^2$ from (-1,1) to (2,4).

j) Evaluate:
$$\iint_{0}^{a} \int_{0}^{x+y} e^{x+y+z} dz dy dx.$$

a2zpapers.com

SECTION-B

- 2. a) Find the radius of curvature at any point of the curve $r = a(1 \cos \theta)$ and prove that ρ^2 / r is constant.
 - b) Trace the curve $y^2(x^2 + y^2) + a^2(x^2 y^2) = 0$ by giving all its features in detail.
- 3. a) Find the volume of the solid formed by revolving the curve $y^2 (2a x) = x^3$ about its asymptote.
 - b) Find the centre of gravity of the arc of the curve $x = a(t + \sin t)$, $y = a(1 \cos t)$ in the first quadrant.
- 4. a) If u = f(r), where $r^2 = x^2 + y^2$, then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$
 - b) Use Lagrange's method of undetermined coefficients to show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
- 5. a) Find the first three terms of the Taylor's series expansion of $e^x \log(1+y)$ in the neighbourhood of (0,0)
 - b) Use Euler's theorem to prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} = y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{\sin u \cos 2u}{4 \cos^{3} u}, \text{ whenever } u = \sin^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$$

SECTION-C

- 6. a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} (x^2 + y^2) dy dx$ by changing into polar coordinates.
 - b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.
- 7. a) Prove the identity:

$$\nabla \left[\frac{\vec{a} \cdot \vec{r}}{r^n} \right] = \frac{\vec{a}}{r^n} - \frac{n(\vec{a} \cdot \vec{r}) \cdot \vec{r}}{r^{n+2}}$$
, where \vec{a} is a constant vector.

- b) A vector field is given by $\vec{F} = 18z\hat{i} 12\hat{j} + 3y\hat{k}$. Evaluate the surface integral $\int_{S}^{\rightarrow} F \cdot \hat{n} ds$, where S is the part of the plane 2x + 3y + 6z = 12 in the first octant.
- 8. Verify the Gauss Divergence theorem for a vector field defined by $\vec{F} = (x^2 yz)\hat{i} + (y^2 xz)\hat{j} + (z^2 xy)\hat{k}$ taken around the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
- 9. a) Find the directional derivative of $f(x, y.z) = xy^2 + yz^3$ at (2,-1,1) in the direction of normal to the surface $x \log z y^2 = -4$ at (-1,2,1).
 - b) State Green's theorem in plane and use it to evaluate

$$\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy,$$

where C is the boundary of the region defined by x = 0, y = 0, x + y = 1